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Abstract
Navigating dynamic, human-populated environments is a critical challenge for mobile robots, as they must balance effective
pathfinding with minimizing social disruption. Cost maps can combine information from different nature and are more
interpretable than final control signals. This paper addresses the generation of real-time cost maps in human-aware navigation
(HAN) by introducing SNGNN2D-v2, a graph neural network designed and trained to capture social interactions and respond
to dynamic elements in human-populated environments. SNGNN2D-v2 is evaluated through three types of experiments. The
first involves deploying a real robot in a controlled indoor environment and assessing the disturbance caused by the robot
when driven by the model. The second experiment tests the proposed model under more complex and unfavorable conditions
using simulated environments. Both experiments include a comparison with other proposals using social and navigation
metrics. The third experiment compares SNGNN2D-v2 with an end-to-end CNN-based method to evaluate how models
generalize across changes in the appearance of the environment and its elements. The results from these experiments suggest
that SNGNN2D-v2 is an effective model for human-aware cost map generation for dynamic environments. Its ability to
capture dynamic information, generalize across scenarios with different appearances, and represent social interactions could
contribute to the development of human-friendly robots.
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1 Introduction

With the increasing prevalence of smart environments,
mobile robots are becoming part of our society [1–3].
Regardless of whether the task a robot performs is col-
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laborative (e.g., a robot and a human working together),
assistive (e.g., a robot accompanying a person), or indepen-
dent (e.g., delivery) [4], it has to coexist in an environment
with humans. To increase their acceptability, these robots
must avoid disturbing humans, which requires following
social conventions and behaving predictably [5]. Human-
AwareNavigation (HAN) plays an important role in this goal,
which requires robots to not only identify humans as dynamic
entities but also consider their interactions with other indi-
viduals and objects in the surrounding environment, their
intentions and their comfort [6].

The work presented in this paper is the continuation of a
series of models for the estimation of the discomfort caused
by a robot in the place where it operates. The first work
in this series introduced Social Navigation Graph Neural
Network (SNGNN-v1), presented in [7] to estimate the dis-
turbance caused by a robot in a given scenario. This model
was trained against the SocNav1 dataset [8], which provides
multiple scores for 9280 static social navigation scenarios
with humans and objects. These scenarios contain human-to-
human, and human-object interactions, and scores indicating
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how much the robot is disturbing. SNGNN-v1 could be used
to generate disruption or cost maps for HAN by querying
the network for every possible position of the robot in the
room. Due to the elevated amount of queries, the time spent
on generating these maps is impractical for real-time appli-
cations. Thus, SNGNN-v1was then used in [9] to bootstrap a
2D dataset to train a new model called SNGNN2D-v1 using
a GNN-CNN combination that can generate these maps in
milliseconds making it usable in real applications.

Despite the ability of SNGNN2D-v1 to generate real-time
cost maps, it presents several limitations. Some of them stem
from the static nature of the dataset used for training, as veloc-
ities are highly informative for social navigation and path
prediction. Moreover, the interactions between entities indi-
cate connection but do not provide any semantic information
(e.g., two humans talking, humans walking together, humans
shaking hands). Semantic information enriches the input and
therefore the features of the GNN, potentially yielding more
accurate results. Furthermore, SNGNN-v1 and SNGNN2D-
v1 can only process static data and therefore their predictions
only consider the information of a single instant. This fact
restricts the ability of the model to make decisions based on
the real-time evolution of the robot’s surroundings.

The mentioned limitations motivated the development of
the SocNav2 dataset [10], comprising brief videos of a 3D
environment that integrates the velocities of entities within
the room. In addition to the dynamic context, SocNav2 offers
several improvements over its predecessor SocNav1, such as
an extended scoring system that accounts for robot move-
ments and objectives, as well as more realistic scenarios and
interactions. SNGNN-v2 was created also in [10] for gener-
ating discomfort scores from dynamic scenarios, serving as
the second version of the static model SNGNN-v1.

SNGNN-v2 adopts a similar approach to its predecessor
but with additional enhancements. It considers two distinct
scores to assess different facets of social navigation, and the
model is trained utilising dynamic scenes in which humans
and the robot are inmotion, addressing the primary limitation
of SNGNN-v1. Again, SNGNN-v2 could be used to generate
discomfort maps for HAN by querying the model for differ-
ent robot positions but the generation time is too high for
real-time applications. In this paper, SNGNN-v2 is employed
similarly to the previous version to bootstrap a new dataset
of images, used for training a new model that directly gen-
erates disruption maps, referred to as SNGNN2D-v2, which
constitutes the second version of SNGNN2D-v1 and is the
primary contribution of the present work.

The mentioned previous works examined two of the three
most salient advantages ofGNNs in theHANdomain: Firstly,
GNNs permit a flexible number of input features, which
proves practical in applications where there is a variable
number of entities, such as humans and objects. Secondly, as
GNNs can accept a graph as input, they capitalize on the rela-

tionships between entities, which are represented as edges
connecting nodes in the graph. This explicit consideration of
interactions results in themodel attaining amore comprehen-
sive understanding of the human-human and human-object
interactions within the room. In this paper, among other con-
tributions, we explore a third advantage, which is that the
direct utilisation of structured data introduces an additional
degree of abstraction. This supplementary abstraction layer
allows the model to be trained on data that disregards the
appearance information of the environment.Additionally, the
required dataset is much smaller than what would be needed
for an end-to-end solution.

To test the proposed model and show its benefits, this
work presents three types of experiments. The first type of
experiment (Sect. 4.2) tests the cost map generation model
with a real robot in an indoor environment and compares the
results with thework in [11] based onGMMs. Themap is uti-
lized by the robot’s navigation planner to follow a safe path
adhering to social conventions. The second type of experi-
ment (Sect. 4.3) comparesSNGNN2D-v2 against its previous
version (SNGNN2D-v1), the previously mentioned GMM-
based approach, and ORCA [12] in a simulated environment
designed to simulate complex situations. This section also
presents the results of a survey gathering users’ opinions.
Finally, the third type of experiment (Sect. 4.4) compares
SNGNN2D-v2 with an end-to-end CNN-based method for
the same taskof costmapgeneration. The results are obtained
using the same training dataset for both models.

The remaining of this work is organized as follows. Sec-
tion2 delves into the existing research on HAN in dynamic
environments and highlights the gaps our proposal aims to
address. SNGNN2D-v2 is described in Sect. 3, detailing
every step of its development, from data acquisition to the
architecture description. In Sect. 4, we present the results of
the previously described experiments. Finally, section 5 sum-
marizes themain conclusions of ourwork and suggests future
research directions.

2 RelatedWork

This section expands upon the literature review in [9], focus-
ing on approaches for addressing HAN in dynamic scenarios
through the use of cost maps. Recent surveys on HAN
highlight the advantages of employing maps for robotic
navigation [6, 13], particularly in the context of SLAM
(Simultaneous Localization and Mapping) systems, which
arewidely implemented in contemporary commercial robots.

The review presented in [13] categorizes cost maps used
in HAN into three types: metric, semantic, and social maps.
The authors acknowledge that distinctions among these
categories are often ambiguous within the literature. Never-
theless, a more pronounced distinction exists between metric
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maps and the other two types. Metric maps focus exclu-
sively on the geometric aspects of the environment, whereas
semantic and social maps introduce semantic information,
providing an additional layer of abstraction. Besides the
advantages discussed in the introduction (Sect. 1), the extra
layer of abstraction offered by the GNNs also facilitates the
transfer from simulation to real-world scenarios [6].

Numerous studies have explored the generation of cost
maps that take into account the velocities and dynamics
of environments for human-aware navigation. For instance,
works such as [14, 15] extend the application of Gaussian
Mixture Models (GMMs) to model areas of disruption in
dynamic environments, considering the velocities of pedes-
trians. However, algorithms that rely on handcrafted social
constraints, such as these, encounter several limitations
as outlined in [9]. Specifically, they require considerable
resources to develop and are difficult to debug, often leading
to omitting significant variables. Additionally, these algo-
rithms tend to oversimplify interactions and make simplistic
assumptions.

Thework in [16] puts forward amethod for semantic robot
localisation using spatio-temporal classification. The process
begins with spatial classification, wherein the input is parti-
tioned into a grid, with each grid cell assigned a label such
as asphalt, cobblestones, grass, or gravel. Following this, the
method’s temporal aspect utilizes visual odometry to merge
the derived maps. The labelled maps are subsequently pro-
jected onto the grid, and a probabilistic criterion refines the
grid labels by considering neighboring cells. It is impor-
tant to note that these maps treat people as mere dynamic
obstacles, without incorporating relational or other seman-
tic information. Furthermore, occupancy grids are known to
have inherent limitations, including resolution constraints,
memory consumption, and computational complexity.

In [17], the authors first model personal space and group
interaction as social costs based on pedestrian perception,
subsequently generating multi-layer dynamic cost maps.
These maps incorporate social costs at various timesteps,
derived frompedestrian trajectory predictions,which provide
social constraints for global path planning. The global path
planner then searches for the optimal state using a heuristic
cost function based on the multi-layer dynamic cost maps.

In [18], the authors propose a HAN system that integrates
researchfindings on humandetection, social behavioralmod-
els, and behavior prediction. It addresses social distance
considerations, consolidating information into a dedicated
layer for human behavior intention cognition. The trajec-
tory is then optimized using a dynamic triangular window
method that incorporates human behavioral intention cogni-
tion, ultimately determining a suitable robot trajectory. The
main limitation of these approaches is disruption areas are
modelled with analytic functions, which are more suscepti-
ble to errors and inconsistencies than a DL-based approach.

Moreover, some social aspects are difficult to express analyt-
ically. For instance, the density of people in the environment
may play a crucial role in the interpretation of disruption.
In crowded spaces, the discomfort area of humans tends to
narrow compared to scenarios with less dense spaces [10].

Alternative approaches for generating cost maps that con-
sider environmental dynamics utilize graph structures. [19]
propose a semantic framework that models the environment
based on natural language descriptions and scene classifi-
cations. The topology of the resulting graph contains nodes
representing the robot’s trajectory, while the edges indicate
connectivity between the nodes. The temporal component
is involved in updating the graph topology by taking into
account previous metric exteroceptive sensor data, scene
appearance observations, and natural language descriptions.
Similarly, [20] capitalizes on the temporal component, intro-
ducing a time-evolving navigation graph that delivers a
semantic topology of the explored area and the connectiv-
ity among detected places in terms of inter-place transition
probability.

Both aforementioned works demonstrate the advantages
of employing graphs for incorporating semantic information
into the model and explicitly accounting for element inter-
actions. However, it is important to note that these studies
do not specifically address the HAN problem, as they do not
consider humans as entities in their navigation models.

Finally, it is worth mentioning that cost maps can also be
created from visual features using end-to-end deep learning
models for image generation [21, 22]. Themain limitations of
these models are their adaptability constraints to new scenar-
ios and poor performance in modelling interactions between
entities in the environment. Owing to Generative Adversarial
Networks’ (GAN) ability to generate high-resolution images
relatively quickly, a state-of-the-art GAN model is selected
for comparisonwith SNGNN2D-v2 in Sect. 4.4. Specifically,
themodel presented in [23], also known asPix2pix, is chosen
for this purpose.

3 Method

The previous version of our proposal, SNGNN2D-v1, lever-
ages GNNs to provide human-aware 2D cost maps for robot
navigation. While the model showed good performance for
certain scenarios, its effectiveness in dynamic environments
was constrained by the following limitations:

• It only considered static features of the entities in a sce-
nario (e.g., the position and orientation of humans).

• The interactions between entities were represented with-
out incorporating semantic information (there is no
distinction between two standing people talking and two
people walking together).
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• The model input represented only a single moment in
time, lacking temporal context.

SNGNN2D-v2 emerges as the solution to overcome these
limitations, offering a practical approach to human-aware
navigation in dynamic and complex scenarios.

While the nature of both models differs, their creation
strategy follows a common set of steps:

1. Create a single-outputmodel that estimates the discomfort
of humans in the robot’s presence;

2. Generate a discomfort map dataset by performing multi-
ple queries to the aforementioned model;

3. Use the generated dataset to train a model that generates
maps instead of scalars.

The subsequent sections describe these steps in detail.

3.1 Single-Output Model for Discomfort Estimation
in Dynamic Scenarios

Building sufficiently large and diverse datasets has become
one of the main challenges in deep learning. Data should ide-
ally cover various scenarios and edge cases. Noisy or biased
data can mislead models, so ensuring data quality is crucial.
For supervised learning, data needs to be labelled or anno-
tated, which can be a time-consuming and expensive process.
Annotation errors and other inconsistencies can adversely
affect model training. In the context of human-aware naviga-
tion, the complexity of the process of annotating disruption
or cost maps from navigation scenarios makes these chal-
lenges especially difficult to solve. Our initial proposal for
this problem was to create a dataset that associates each
scenario with a single discomfort score. In this paper, such
a dataset (SocNav2) is extended to create a 2-dimensional
dataset, as will be explained in section 3.2.

The scenarios compiled in SocNav2 were generated using
SONATA [24], a tool designed to simulate dynamic human-
populated navigation scenarios. While SONATA exclusively
provides simulated scenarios, the use of synthetic data is
crucial in the context of human-aware navigation. This is pri-
marily because generating a comparable number of scenarios
using only real-world data would be infeasible. Furthermore,
situations that jeopardize human safety, such as human-robot
collisions, cannot be ethically performed in real-world set-
tings.

Each sample of SocNav2 consists of 35 “snapshots” of a
scene of a room with a moving robot, a goal position for the
robot, objects, and potentially moving humans, taken during
a time interval of a few seconds (see Fig. 1). Humans may
interact with other humans or objects in the room. The anno-
tation of the data corresponds to the scores for two social
navigation-related statements: “the robot does not cause any

disturbance to the humans in the room” (Q1) and “the robot
is moving towards the goal efficiently, not causing any dis-
turbance to the humans in the room” (Q2). The scores range
from 0 to 100 to represent situations that go from unaccept-
able to perfect.

Six subjects participated in scoring the dataset, yielding a
total of 13, 406 scored samples. This initial set was extended
using a process of data augmentation that resulted in a final
dataset comprising 53, 600 samples. More details about the
dataset and its generation can be found in [10].

Using SocNav2 and GNNs, a model to predict discom-
fort scores in dynamic scenarios was developed [10]. This
model, named SNGNN-v2, receives a graph representing the
scenario through time as input and produces two values cor-
responding to the scores for Q1 and Q2. The input graphs
are composed of a sequence of three sub-graphs correspond-
ing to three snapshots of the videos shown to the subjects.
Each sub-graph (referred to as a ’frame graph’) is separated
by a one-second interval. The graph creation process entails
two steps. First, each snapshot is transformed into a separate
frame graph. Entities in the scene are represented as separate
nodes, considering 5 types of nodes:

– room (r): There is one room node per frame graph. It
acts as a global node and is also used to include the infor-
mation of the robot.

– wall (w): A node for each of the segments defining the
room limits.

– goal (g): Used to represent the position that the robot
must reach.

– object (o): A node for each object in the scenario.
– human (h): A node for each human.

The room node is connected in both directions to any other
node of the graph for that frame. Using a global node favors
communication across the graph and reduces the number of
layers required [25]. In addition, for every human involved
in interactions, two new edges are added between the human
and the entity (human or object) they interact with, one in
each direction. The graphs also include self-edges for all
nodes.

Once the three frame graphs in the sequence have been
generated, they are merged into a single graph representing
the sequence (see Fig. 2). This temporal connection is estab-
lished with an edge linking the node in each frame graph to
the corresponding node in the subsequent frame graph.

The feature vectors of the nodes are constructed by con-
catenating several sections. The first two sections consist
of one-hot encodings that specify the node types and the
frame towhich they belong. The remaining sections are type-
specific and contain data only if the node matches that type;
otherwise, they are filled with zeros. For human, wall, and
object nodes, the features in these sections include position,
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Fig. 1 Three snapshots of a SocNav2 dataset sample

Fig. 2 Example of how the scenario-to-graph transformation works, based on the scenario depicted in Fig. 1. The sub-indexes of the node names
refer to the time frame of each node

distance to the robot, speed, and orientation, all referenced
to the robot’s frame. For normalization purposes, position
and distance are represented in decametres. Similarly, orien-
tation is represented as sine and cosine components, rather
than the angle itself. This orientation representation enforces
periodic rotational equivariance with a period 2π radians,
avoiding problems related to the use of different values for
representing the same or close angles (for instance, 2π and
0). In the case of wall segments, the position denotes the seg-
ment’s centre, and orientation represents the tangent. Object
sections additionally include width and height features that
define the object’s bounding box. For nodes corresponding to
room symbols, the section includes the normalized number
of humans in the room and the robot’s velocity command. An
illustrative layout of this structure can be found in Table 1.

Edge features are dependent on the type of GNN block
used to create the network architecture. Thus, edges do
not include any information in graph convolution networks
(GCN) or graph attention networks (GAT). However, rela-
tional graph convolutional networks (R-GCN)blocks support
edge labels. For this kind of block, a different label is
used for each possible type of relation (e.g., human-human,

Table 1 Structure of the feature vectors of nodes

n. one-hot 5 elements (one per node type)

f. one-hot 3 elements (one per frame graph)

room number of humans adv. speed rot. speed

human position speed orientation distance

object position speed orientation distance shape

wall position orientation distance

goal position distance

human-room, wall-room). Finally, for message passing neu-
ral networks (MPNN), edges may include a vector feature
with additional information. Specifically, we have used one-
hot encodings to represent the different types of relation
between two nodes and one additional feature to include the
distance between 2 entities.

To create our discomfort prediction model (SNGNN-v2),
we followed a process of hyperparameter tuning, training
different architectures with different GNNblocks on the Soc-
Nav2 dataset. According to the connectivity of the graph, all
nodes are directly or indirectly connected to the room node
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of the last frame (green node of Fig. 2). Using this fact, the
GNNswere trained to perform backpropagation based on the
feature vector of that node in the last layer. After more than
300 training sessions, the best-performing model was com-
posed of a sequence of 6 MPNN blocks with 40, 30, 21, 12,
and 3 hidden units and 2 output units, corresponding to the
scores for Q1 and Q2.

3.2 Generation of a Discomfort Map Dataset

Training a discomfort map estimation model in a supervised
fashion requires a dataset associating scenarios to such kinds
of maps. SocNav2 is not suitable for that purpose as it only
provides annotations for discomfort values considering that
the robot is positioned at a specific location in the environ-
ment. Nevertheless, SNGNN-v2, trained using SocNav2, can
produce a spectrum of discomfort values for a specific sce-
nario through successive model queries, each time varying
the robot’s position in the input of the model. Figure3 illus-
trates this idea.

According to this strategy, the generation of a cost map
involves an iterative process, where each iteration produces
a discomfort value for a specific position on the map. More
precisely, given adynamic scenario and aparticularmapposi-
tion, we calculate the discomfort value using SNGNN-v2 to
estimate the Q1 score for that robot position in the scenario.
This involves creating the input graph for the model, with
the robot’s position varying for each iteration, as illustrated
in Fig. 3. Note that only the Q1 score has been used since it
does not account for the goal position of the robot. Besides,
since the generated maps are primarily intended for planning
purposes, specific robot movements are not considered. Con-
sequently, to generate eachmap, the robot remains stationary
while creating the graphs used as input for the SNGNN-v2
model.

Using this approach, we generated a dataset associating
dynamic scenarios with discomfort maps for human-aware
navigation. Each map has a resolution of 150 × 150. This
resolution was selected to balance the quality of the resultant
image against the generation time. The dataset comprises
17, 044 scenarios in total, split into 13, 600 training samples,
1, 717 for evaluation, and 1, 727 for testing.

3.3 Estimation of Discomfort Maps for Dynamics
Scenarios

The process described for generating discomfort maps is
impractical for real-time applications. Even on a high-
performance computer, this method could take several
minutes, particularly for complex scenarios. As introduced
previously, to address this issue, we propose SNGNN2D-v2,
a neural network capable of learning the relationship between
scenarios and maps using the generated dataset.

As SNGNN2D-v2 is designed to generate maps from
graph representations of scenarios, it has to integrate distinct
modules associated with various neural network architec-
tures. The initial module comprises a GNN that processes a
graph representing the scenario and produces an intermediate
map representation capturing essential information. In turn,
the secondmodule takes this intermediate representation and
generates an image corresponding to the intended discomfort
map. This task is accomplished through the utilization of a
CNN.

Regarding the GNN, since the raw data considered in both
models, SNGNN-v2 and SNGNN2D-v2, is the same, the sce-
nario information in the 2Dversion is encoded using the same
type of graph as in the scalar version. However,modifications
have been made to these new graphs to optimize their gener-
ation and ensure compatibility with CNN.

Firstly, the entity graph, which encodes room information
as depicted in Fig. 2 across three distinct time-frame graphs,
is merged into a singular graph, omitting the goal node. Tem-
poral information is now encoded within the nodes’ feature
vectors, eliminating the need for temporal connections. This
restructuring leads to a simplified graph, enhancing process-
ing speed and efficiency.

Secondly, the graph incorporates a lattice of nodes that
delineate a square area surrounding the center of the frame
of reference. The primary objective of this grid is to establish
a direct connection between the GNN and the CNN through
an intermediary representation that both modules can effi-
ciently process. The number of nodes and the area they cover
are tunable hyperparameters, balancing performance, com-
putational time, and area coverage.

Finally, the graph resulting from the merged temporal
graphs is integrated with the grid by linking each entity node
to the nearest grid node, spatially. Each entity node can be
connected to multiple grid nodes within a specific radius,
leading to the final unified graph depicted in Fig. 4.

With the union of the three graphs into one, the features
of each node representing an entity are likewise merged. The
metrics section for each entity node type, excluding the fea-
tures of the goal node, which is not included in the graph,
is replicated three times, each corresponding to a different
frame. To indicate the number of available frames, a one-hot
encoding is used, ranging from 1 to amaximum of 3. In cases
where a frame is unavailable, the fields corresponding to that
frame are populated with zeros.

Furthermore, to accommodate the grid node type, an addi-
tional element is added to the node type’s one-hot encoding,
along with a concatenation of grid features. These grid fea-
tures encompass the 2D position of the grid node and its
distance from the center. Table 2 shows a comprehensive
overview of these node features.

Regarding edge features, new labels are introduced for
the grid connections. Specifically, a label is assigned for each
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Fig. 3 Process of generating
discomfort maps using
SNGNN-v2

Fig. 4 Adaptation of the graph
in Fig. 2 including the lattice of
nodes and merging the 3
temporal graphs into a unique
graph

Table 2 Features of nodes for SNGNN2D-v2

n. one-hot 5 elements (one per node type)

f. one-hot 3 elements (max. number of frames)

grid position distance

x3 room number of humans adv. speed rot. speed

human position speed orientation distance

object position speed orientation distance shape

wall position orientation distance

roomentity connecting to the grid (e.g., wall-grid, room-grid,
human-grid). Additionally, the labels of edgeswithin the grid
are differentiated based on the direction of the connection,
ensuring an accurate representation of their relative positions
(i.e., up, down, left, right).

The proposed architecture is depicted in Fig. 5. The input
graph to the GNN is composed of the entity graph repre-
senting the room and the grid of nodes that facilitate the
connection between the GNN and the CNN. Since the GNN
generates an output graphwith the same structure as the input

graph, it includes additional nodes incompatible with the
CNN. To ensure compatibility, a filtering module is respon-
sible for retaining only the grid nodes. Each grid node can be
linked to a pixel, with several channels corresponding to the
node’s features. Following this node-pixel analogy, an image
is formed, serving as the initial representation of a disruption
map for the given scenario. However, it possesses a limited
resolution due to a constraint on the number of grid nodes to
maintain GNN processing efficiency. To achieve a final map
with the desired resolution, the CNNprocesses an upsampled
version of the grid-to-image conversion, ultimately produc-
ing an enhanced disruption map. We specifically employ
a ResNet-based architecture for the CNN, which consists
of 6 ResNet blocks positioned between downsampling and
upsampling layers. This architectural choice aligns with one
of the potential network architectures used in Pix2pix [23].
Our selection is motivated by two key factors. Firstly, it has
demonstrated strong performance in image transformation
tasks. Secondly, it serves to illustrate the advantages of our
approach compared to an end-to-end solution.
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Fig. 5 SNGNN2D-v2 architecture

Table 3 Hyperparameters used to train the best model for SNGNN2D-
v2

Hyperparameter Value

Batch size 40

CNN input channels 35

Learning rate 5e−5

Activation GAT layer elu

Final activation GAT relu

GAT hidden units [95, 71, 62, 57, 45, 35]
GAT heads [34, 28, 22, 15, 13, 10]
Alpha 0.2088642

4 Experimental Results

To substantiate the proposedmodel, this section encompasses
a comprehensive experimental procedure, addressing: a) the
precision of themodel and its time efficiency (Sect. 4.1);b) an
assessment of its integration within the ROS navigation stack
in a real robot (Sect. 4.2); c)Acomparison of themodel’s pre-
vious version, a GMM based model [11], and the Optimal
Reciprocal Collision Avoidance (ORCA) approach, using
social metrics in simulated scenarios (Sect. 4.3); and d) a
comparative analysiswith aCNN-based approach (Sect. 4.4).

4.1 Training Results: Time and Accuracy

To find the best architecture for the proposed model, we fol-
lowed a process of hyperparameters’ random search using
several GNN’s types, numbers of layers and neurons, and
activation functions. After this process, the model show-
ing the best performance achieved an MSE of 0.0018720.0018720.001872,
0.0048330.0048330.004833 and 0.0047500.0047500.004750 for the training, development, and
test datasets, respectively.

The architecture obtaining the best results is a Graph
AttentionNetworkwith 7 layers, followedby aResNet-based
CNN module as explained in Sect. 3.3.

Table 3 shows the hyperparameters used to train the best
model.

Figure 6 shows theoutput ofSNGNN2D-v2 in comparison
with the ground truth from the bootstrapped dataset. As can
be observed, the visual results are very similar. In addition,
the average time for a query to the network, measured in an
NVIDIA JetsonAGXOrin,1 is111111milliseconds,whichmakes
the model suitable for real-time use.

A video showing the real-time generation of maps from
scenarios created with SocNavGym [26] can be found at
https://github.com/gnns4hri/SNGNN2D-v2.

4.2 Real Environment Evaluation

To evaluate the maps generated by SNGNN2D-v2 in a real
scenario, we use the differential RB-1 base from Robotnik.2

The robot employs the ROS navigation stack with a Timed
Elastic Band (TEB) planner ([27]). The generated cost maps
are published as a ROS topic, to which the robot’s navigation
system can subscribe and use as a local map for TEB. For
comparative purposes, the maps generated using GMMs in
the model developed by [11] were also tested using the same
planner.

Although different controllers might yield varying out-
comes, in our experiments, the same controller is consistently
used across all methods to ensure a fair comparison. The pri-
mary focus is to evaluate the cost map generation rather than
the controller itself. By keeping it constant, we isolate the
impact of the costmapgeneration on the overall performance.

Human positions and velocities within the room are
detected using the 3D pose estimator presented in [28]. A
ROS plugin overlays the generated map onto the map cre-
ated by the robot’s laser, enabling objects to appear in the
final map.

Each map was tested five times across seven different
scenarios, illustrated in Fig. 7. The robot’s starting and
goal positions remained constant across all experiments. The
description of each scenario is as follows:

1 NVIDIA Jetson Orin specification: https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-orin/.
2 Robotnik RB1-base specifications: https://robotnik.eu/products/
mobile-robots/rb-1-base-en/.
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Fig. 6 Results generated by
SNGNN2D-v2 (right column)
compared with the ground truth
(middle column) for two
SONATA scenarios (left
column). The first row shows
the results for a L-shaped room
and the second row for a
square-shaped room

Fig. 7 Schemes of the different scenarios used to test the maps
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– Scenario A (SA): This scenario features two groups of
three stationary humans. The centres of the two groups
are separated by 2.5 meters. Each member of a group
is located 0.8 meters from the group centre. The robot’s
goal is midway between both groups, requiring the robot
to traverse between them.

– Scenario B (SB): Identical to SA, but with an additional
human added to each group. The newly added human is
highlighted in red in the top-left image of Fig. 7.

– Scenario C (SC ): This scenario involves two moving
humans: one moving opposite to the robot and another
perpendicularly. Both humans start moving at the same
time as the robot.

– Scenario D (SD): Two humans move towards the robot’s
initial position, side by side, with an interaction between
them. The robot’s goal is at the midpoint between the
initial positions of the humans.

– Scenario E (SE ):This scenario comprises two stationary
humans interacting with each other. They stand 1 meter
apart, facing each other as if in conversation. The robot
should circumnavigate the interaction area to reach the
goal on the other side.

– Scenario F (SF ): Similar to the previous scenario, but
substitutes one person for an object measuring 0.8× 0.8
meters. The human faces the object at a distance of 1
meter, interacting with it. Once again, the robot should
avoid the interaction area.

– Scenario G (SG): Identical to the previous scenario but
with the human and object separated by 3 meters. Given
this setup, the robot has insufficient space to bypass the
person or object, so it must traverse the interaction area
while minimising disruption.

It is important to mention that only scenarios C, D, and E
were recorded with real people present. In the other experi-
ments, where the people were stationary, their positions were
hard-coded to generate the cost maps, thereby avoiding the
small error introduced by the pose estimator in determining
their positions. Additionally, it is worth noting that the reso-
lution of the GMMmaps had to be reduced by half to ensure
real-time responses. The default resolution proved to be too
slow for its use with the robot planner.

Figure8 exemplifies scenarios C and E, which were
recorded with real people. The right-hand images showcase
the robot’s path, along with the positions of the individuals
tracked by the 3D pose estimator presented in [28].

The completion of the experiments was followed by the
evaluation of results using the same metrics that are outlined
in the experiments in [9], with an additional success rate
metric:

– sr: percentage of experiments in which the robot reaches
the goal.

Fig. 8 Images of the experiments for scenarios C and E. The left-hand
images depict footage captured during the experiments, while the right-
hand images display the recorded positions of the robot and humans.
The robot’s path is illustrated by a dark blue line, while magenta and
cyan colors represent the positions of the two individuals involved in
the experiments

– sii : average percentage of intrusions into the intimate
space of humans (closer than 0.45m).

– sip: average percentage of intrusions into the personal
space of humans (closer than 1.2m).

– sir : average percentage of intrusions into an interaction
(closer than 0.5m).

– t: average normalized time to reach the goal.
– pl: average normalized path length.
– CHC: average cumulative heading changes.
– dhmin : average minimum distance to a human.

Table 4 presents the outcomes for all the metrics across
all experiments conducted using GMM and SNGNN2D-v2
maps. The best metrics values are highlighted in bold.

Both methods show comparable results across most met-
rics. In addition, the limited number of experiments per
scenario does not allow for determining significant statis-
tical differences for certain results. Nevertheless, one of the
main differences between the twomethods becomes apparent
when the scenario involves dynamic elements. In such cases,
the map generation time required by GMM is too slow to
react effectively to moving individuals, leading to the robot
failing to reach its goal. This is especially notable in Scenario
D, as indicated by the success rate of both methods.

In scenarios with static groups (A and B), both methods
perform similarly. However, the robot using SNGNN2D-v2
maps tends to get closer to humans as the number of people
increases. In densely populated scenarios, this closer proxim-
ity may be considered acceptable due to the limited available

123



International Journal of Social Robotics

Ta
bl
e
4

R
es
ul
ts
of

th
e
m
et
ri
cs

fo
r
ea
ch

of
th
e
sc
en
ar
io
s
co
m
pa
ri
ng

SN
G
N
N
2D

-v
2
w
ith

th
e
G
M
M

m
od
el
in

[1
1]

S
AS
AS
A

S BS
BS B

S CS CS C
S DS
DS D

S ES
ES E

S FS
FS F

S GS GS G

sr
(%

)
sr

(%
)

sr
(%

)
G
M
M

10
0

10
0

80
40

60
10
0

10
0

SN
G
N
N
2D

-v
2

10
0

10
0

80
10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

si
i(
%

)
si
i(
%

)
si
i(
%

)
G
M
M

0
0

0
2.
96
3
±

2.
96
3

0
0

0

SN
G
N
N
2D

-v
2

0
0

0
00 0

0
0

0

si
p
(%

)
si

p
(%

)
si

p
(%

)
G
M
M

59
.5
2
±

3.
31

59
.5
2
±

3.
31

59
.5
2
±

3.
31

64
.4
14

±
3.
70
2

64
.4
14

±
3.
70
2

64
.4
14

±
3.
70
2

18
.8
55

±
1.
74
1

27
.1
64

±
1.
72
5

10
.1
55

±
3.
45
1

10
.1
55

±
3.
45
1

10
.1
55

±
3.
45
1

15
.3
65

±
30

.7
29

0

SN
G
N
N
2D

-v
2

78
.2
66

±
4.
72
2

75
.2
16

±
1.
41

13
.7
99

±
5.
37
1

13
.7
99

±
5.
37
1

13
.7
99

±
5.
37
1

23
.3
42

±
1.
88
4

23
.3
42

±
1.
88
4

23
.3
42

±
1.
88
4

37
.8
73

±
3.
34
5

00 0
0

si
r
(%

)
si
r
(%

)
si
r
(%

)
G
M
M

0
0

0
0

0
0

10
0

SN
G
N
N
2D

-v
2

0
0

0
0

0
0

10
0

tt t
G
M
M

5.
21
1
±

0.
48
6

4.
43
7
±

0.
24
4

4.
43
3
±

0.
12
1

4.
43
3
±

0.
12
1

4.
43
3
±

0.
12
1

4.
85
2
±

0.
00
5

4.
85
2
±

0.
00
5

4.
85
2
±

0.
00
5

5.
04
2
±

0.
19
2

4.
13
4
±

1.
02
9

4.
13
4
±

1.
02
9

4.
13
4
±

1.
02
9

3.
38
3
±

0.
23
1

3.
38
3
±

0.
23
1

3.
38
3
±

0.
23
1

SN
G
N
N
2D

-v
2

5.
11
5
±

0.
94
6

5.
11
5
±

0.
94
6

5.
11
5
±

0.
94
6

4.
32
3
±

0.
18
9

4.
32
3
±

0.
18
9

4.
32
3
±

0.
18
9

4.
71
8
±

0.
19
2

5.
29
8
±

0.
47
9

4.
83
7
±

0.
29
3

4.
83
7
±

0.
29
3

4.
83
7
±

0.
29
3

4.
78
8
±

0.
38
1

3.
86
8
±

0.
18
2

plpl p
l

G
M
M

1.
13
4
±

0.
62
5

1.
07
7
±

0.
02
6

0.
99
2
±

0.
01
3

1.
00
9
±

0.
00
8

1.
00
9
±

0.
00
8

1.
00
9
±

0.
00
8

1.
05
1
±

0.
05
7

0.
96
7
±

0.
03
4

0.
96
7
±

0.
03
4

0.
96
7
±

0.
03
4

1.
01
9
±

0.
04
4

SN
G
N
N
2D

-v
2

0.
96
7
±

0.
02
5

0.
96
7
±

0.
02
5

0.
96
7
±

0.
02
5

1.
01

±
0.
01
6

1.
01

±
0.
01
6

1.
01

±
0.
01
6

0.
99
1
±

0.
00
2

0.
99
1
±

0.
00
2

0.
99
1
±

0.
00
2

1.
02

±
0.
02

0.
96
9
±

0.
01
4

0.
96
9
±

0.
01
4

0.
96
9
±

0.
01
4

0.
99
6
±

0.
02
5

0.
99
8
±

0.
02
7

0.
99
8
±

0.
02
7

0.
99
8
±

0.
02
7

C
H
C

(r
ad

s)
C
H
C

(r
ad

s)
C
H
C

(r
ad

s)
G
M
M

3.
57
4
±

0.
62
7

3.
57
4
±

0.
62
7

3.
57
4
±

0.
62
7

2.
09
6
±

0.
35
3

2.
09
6
±

0.
35
3

2.
09
6
±

0.
35
3

3.
60
9
±

0.
25
9

1.
80
1
±

0.
80
7

1.
80
1
±

0.
80
7

1.
80
1
±

0.
80
7

4.
70
5
±

0.
44
8

3.
41
6
±

1.
34
8

3.
41
6
±

1.
34
8

3.
41
6
±

1.
34
8

1.
01
1
±

0.
20
9

1.
01
1
±

0.
20
9

1.
01
1
±

0.
20
9

SN
G
N
N
2D

-v
2

4.
57

±
1.
69
6

2.
43
1
±

0.
04
35

3.
04
1
±

0.
75
4

3.
04
1
±

0.
75
4

3.
04
1
±

0.
75
4

2.
62
3
±

0.
50
6

4.
13
9
±

0.
77
6

4.
13
9
±

0.
77
6

4.
13
9
±

0.
77
6

3.
77
3
±

1.
11
2

1.
21

±
0.
34
9

d
h
m
in

(m
)

d
h
m
in

(m
)

d
h
m
in

(m
)

G
M
M

0.
80
1
±

0.
06
5

0.
81
6
±

0.
01
9

0.
81
6
±

0.
01
9

0.
81
6
±

0.
01
9

0.
58
5
±

0.
03
4

0.
47
1
±

0.
08
3

1.
03
8
±

0.
04
4

1.
03
8
±

0.
04
4

1.
03
8
±

0.
04
4

1.
60
4
±

0.
44
3

1.
68
8
±

0.
03
3

SN
G
N
N
2D

-v
2

0.
81

±
0.
03

0.
81

±
0.
03

0.
81

±
0.
03

0.
73
1
±

0.
02
2

0.
77
1
±

0.
21
8

0.
77
1
±

0.
21
8

0.
77
1
±

0.
21
8

0.
60
7
±

0.
04
1

0.
60
7
±

0.
04
1

0.
60
7
±

0.
04
1

0.
86
1
±

0.
04
8

2.
00
6
±

0.
10
6

2.
00
6
±

0.
10
6

2.
00
6
±

0.
10
6

1.
87
8
±

0.
04
5

1.
87
8
±

0.
04
5

1.
87
8
±

0.
04
5

123



International Journal of Social Robotics

space [10]. This social aspect is challenging to fully represent
in a model-based approach.

Finally, in scenarios involving human-human and human-
object interactions (E, F, G), the robot’s performance using
SNGNN2D-v2maps is similar to that ofGMMmaps in terms
of speed and heading changes. However, when the robot
needs to navigate through these interactions (Scenario G),
it tends to maintain a greater distance from humans when
using SNGNN2D-v2.

While further experiments in real crowded scenarios
are necessary to confirm the successful deployment of
SNGNN2D-v2 on real robots, these initial results provide
a promising foundation for future work.

4.3 Evaluation in Simulated Scenarios

To extend the number and variety of situations for evaluating
our proposal, SNGNN2D-v2 has also been tested in sim-
ulated scenarios using SocNavGym [26]. Specifically, we
present a comparison between SNGNN2D-v2, SNGNN2D-
v1, GMM [11], and ORCA [12] for two different simulated
scenario configurations using a set of evaluation metrics
based on the ones suggested by [29]:

– sr: success rate.
– cr: collision rate (considering humans, objects, and
walls).

– wcr: wall collision rate.
– ocr: object collision rate.
– hcr: human collision rate.
– rcp: percentage of collisions against humans caused by
the robot. A collision is considered to be caused by the
robot if its linear velocity is not zero at the moment of
the collision.

– to: percentage of failures caused by timeout before reach-
ing the goal.

– fp: average percentage of steps in the episode in which
the robot does not decrease the distance to the goal.

– st: average time in the episode inwhich the linear velocity
of the robot is zero.

– t: average time to reach the goal.
– pl: average path length.
– spl: success weighted by path length.
– psc: average percentage of steps in the episode in which
the robot complies with personal space.

– dhmin : average minimum distance to human.
– cdmin , cdavg: minimumand average distance to obstacles

(on average considering all episodes).
– vmin , vavg , vmax : minimum, average and maximum lin-
ear velocity of the robot (on average considering all
episodes).

The two scenario configurations used in this evaluation
consist of a 10m × 10m room with objects and humans in
it. Each scenario includes a robot and a goal position. All
entities, including the goal, are randomly located. The num-
ber of objects varies from 2 to 5. Humans can be static or
dynamic and, additionally, can be interacting with another
human or an object. The number of static humans, inter-
acting or not, ranges from 0 to 2. The difference between
the two configurations is in the number of dynamic humans
and dynamic interactions (two humans walking together).
In the first configuration, the number of dynamic humans
varies between 0 and 2 and the same goes for the number of
dynamic interactions. On the contrary, in the second configu-
ration, the number of both, dynamic humans and interactions,
has been set to 2. Dynamic humans do not always consider
the robot in their policy. Particularly, the probability that a
moving human explicitly avoids the robot has been set to
0.5. This setting allows testing unfavorable conditions for
the robot that cannot be tested in real-world environments
while ensuring human safety.

For eachmethod and scenario configuration, 200 episodes
were run. In the case of the two versions of SNGNN2D and
GMM, the generated costmaps are used by a commoncontrol
system in charge of computing the minimum cost path and
moving the robot toward the goal position following that path.

Table 5 shows the mentioned metrics for each method
across the two scenario configurations, with the best result
for each metric highlighted in bold. Based on these results,
SNGNN2D-v2 can be considered the proposal offering the
most favorable social metrics. Thus, the presented approach
provides the highest success rate, exhibiting a relatively
smaller decline in this metric for the second configuration
compared to the other methods. The main reason for a higher
success rate is that the collision rate and, particularly, the
human collision rate, is significantly lower in SNGNN2D-
v2. In addition, in SNGNN2D-v1, GMM, and ORCA, most
collisions with humans are caused by the robot.

ORCA is themethod exhibiting theworst behavior regard-
ing human collisions. This result could be expected since
ORCA assumes that all agents have the same responsibil-
ity when it comes to avoiding collisions. Comparatively,
SNGNN2D-v1 and GMM present similar success and colli-
sion rates for both configurations. These results underscore
the limitations of both methods in considering the dynam-
ics of the environment. In the case of SNGNN2D-v1, this
limitation arises from using static data exclusively during
model training. Besides, themodel cannot represent dynamic
interactions, causing the robot to traverse the interaction
area between two humans walking together occasionally.
RegardingGMM,besides the limitations inmodelling certain
aspects of the environment (such as the adaptability of the
personal space according to people density), the frequency at
whichmaps can be generated is dependent on the complexity
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Table 5 Comparison between SNGNN2D-v2, SNGNN2D-v1, GMM and ORCA in simulated scenarios

Configuration 1 Configuration 2

SNGNN2D-v2 SNGNN2D-v1 GMM ORCA SNGNN2D-v2 SNGNN2D-v1 GMM ORCA

sr(%) 91,00 85,50 85,50 72,50 87,00 78,50 78,00 52,50

cr(%) 7,00 14,50 14,00 20,50 9,50 21,50 22,00 40,50

wcr(%) 2,00 0,50 0,00 5,50 2,00 1,50 0,50 7,00

ocr(%) 0,00 0,50 1,50 4,50 0,50 1,50 0,50 6,00

hcr(%) 5,00 13,50 12,50 10,50 7,00 18,50 21,00 27,50

rcp(%) 40,00 96,30 80,00 100,00 50,00 83,80 95,20 100,00

to(%) 2,00 0,00 0,50 7,00 3,50 0,00 0,00 7,00

fp(%) 4,20 2,50 2,20 14,10 4,50 1,70 2,50 19,60

st(s) 7,270 4,537 4,953 0,000 9,772 4,690 5,013 0,444

t(s) 16,776 14,464 14,959 12,012 20,121 14,259 15,403 12,261

pl(m) 3,939 3,383 3,311 4,191 4,421 3,265 3,263 4,278

spl(%) 82,50 82,20 81,90 70,10 76,60 76,70 74,60 50,00

psc(%) 98,40 97,70 98,00 98,10 99,00 97,60 97,00 95,20

dhmin(m) 1,627 1,375 1,546 1,507 1,196 1,150 1,157 1,066

cdmin(m) 1,254 1,336 1,307 1,104 1,166 1,263 1,314 1,178

cdavg(m) 4,297 4,321 4,273 4,275 4,340 4,266 4,287 4,309

vmin(m/s) 0,000 0,000 0,000 0,232 0,000 0,000 0,000 0,215

vavg(m/s) 0,230 0,241 0,224 0,315 0,214 0,234 0,217 0,299

vmax (m/s) 0,400 0,400 0,400 0,388 0,400 0,398 0,400 0,379

of the scenario. This restricts the robot’s ability to replan in
time to avoid collisions with moving humans. This limitation
becomes evident when introducing more stationary humans
to the environment configuration. Specifically, modifying the
second configuration to include six additional static humans
leads to a decline in GMM’s success rate to 69.5%, mainly
due to an increase in the human collision rate. However, the
two versions of SNGNN2D exhibit comparable results to
those of the original configuration, providing a success rate
of 76.5% for SNGNN2D-v1 and 85.5% for SNGNN2D-v2.

Concerning navigation metrics, the time required to reach
thegoal and thepath length are higher for SNGNN2D-v2 than
for the other three methods (except the pl for configuration 1
when using ORCA). This is because the cost map in the sec-
ond version of SNGNN2D forces a longer andmore complex
path –resulting in more directional changes– to minimize the
discomfort of stationary humans and avoid collisions with
dynamic humans. Consequently, metrics such as spl, dhmin ,
and psc indicate higher values for both configurations in
SNGNN2D-v2, suggesting more socially acceptable robot
behavior even in complex situations.

To complement these results with user opinions, we
designed a survey featuring several videos of the robot navi-
gating in simulated scenarios using GMM, SNGNN-v1, and
SNGNN-v2. Participants were asked to rate these videos
based on how well the robot navigated without disturbing

the humans. The score ranged from 0 to 10, with 0 represent-
ing unacceptable robot behavior and 10 indicating perfect
behavior.

The videos were randomly generated using SocNavGym,
considering a 10m × 10m room with various objects, a vari-
able number of moving humans ranging from 2 to 6, and a
variable number of stationary humans ranging from 0 to 6. To
prevent survey fatigue, the survey was organized into three
forms, each containing 15 videos-5 videos per method.

A total of 125 people participated in the survey. Specif-
ically, 41 participants answered forms 1 and 3, while 43
answered form 2. Thus, each method received 625 scores.
Among the participants, 60% were men and 40% were
women, with ages ranging from 23 to 68 years. Although
the majority had experience with modern technology, 76%
had little to no experience with robots.

To analyse the inter-rater reliability, the Intraclass Cor-
relation Coefficient (ICC) and its 95% confidence interval
(CI95%) were calculated for each form individually. Partic-
ularly, we estimated ICC based on a mean-rating, absolute
agreement, 2-waymixed-effectsmodel (ICC3k) [30]. Table 6
summarizes these results, which show a high degree of agree-
ment among the participants of each survey form.

The results of the ratings of each method are depicted in
Fig. 9 and Table 7. Figure 9 presents a box plot showing the
distribution of the scores for the three methods, while Table 7
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Table 6 Results of the Intraclass
Correlation Coefficient for the
three survey forms

Form ICC3k CI95%

1 0.995393 [0.99, 1.0]
2 0.993564 [0.99, 1.0]
3 0.991241 [0.98, 1.0]

Fig. 9 Box plot showing the distribution of scores per method

Table 7 Descriptive statistics (mean, median, and standard deviation)
of the survey scores of GMM, SNGNN2D-v1, and SNGNN2D-v2

Method Mean Median SD

GMM 6.2896 8.0 4.045134

SNGNN2D-v1 6.7040 8.0 3.726688

SNGNN2D-v2 7.9168 9.0 2.911536

provides their descriptive statistics. Both illustrations indi-
cate SNGNN2D-v2 received higher ratings compared to the
other two methods, which can be considered comparable. To
determine the significance of these results, we conducted an
ANOVA test, which yielded a p-value of less than 0.001,
followed by a post-hoc Tukey’s HSD test (Table 8). The
results of the Tukey test show that the difference between
GMM and SNGNN2D-v1 is not significant, suggesting that
the surveyparticipants found these twomethods to be roughly
equivalent. However, both GMM and SNGNN2D-v1 were
significantly outperformed by SNGNN2D-v2, which was
perceived as causing less discomfort to humans according
to the evaluations.

4.4 Comparison with Pure CNN BasedModel

The last experiment presents the results of cost map gen-
eration utilising a CNN-based model, in contrast with the
proposed model. As mentioned, the model selected for
comparative evaluation is Pix2pix ([23]), a remarkable Gen-
erative Adversarial Network (GAN) capable of transposing

an image into another. As the proposed model, Pix2pix
was trained utilising an identical dataset, achieving a Mean
Squared Error (MSE) of 0.00849260.00849260.0084926 within the test set, which
is roughly double the MSE produced by SNGNN2D-v2 in
the same set.

ForPix2pix, the input volumes are constructed by concate-
nating three video frames from the dataset along the channel
dimension. These frames have a temporal difference of one
second, mirroring the method used to construct the graph for
the SNGNN2D-v2.

Figure10 provides a visual comparison of the Pix2pix
results alongside the corresponding ground truth used for
training, including a frame from the source video on the
left-hand side. The output generated by SNGNN2D-v2 has
also been included on the right-hand side of Fig. 10. As
can be observed, the outcomes bear high visual similarity
and closely align with the results generated by the proposed
model. Nevertheless, the SNGNN2D-v2 model asserts two
primary advantages over CNN-based models: superior rep-
resentation of entity interactions and invariance to changes
in the appearance of the environment and its elements. These
benefits are demonstrated across two different experiments.

In the initial experiment, Pix2pix is tasked with generat-
ing cost maps for two scenarios from the test set in which
two individuals are interacting. The resultant maps can be
found in Fig. 11, where Pix2pix incorrectly models interac-
tion areas where no interaction exists and vice-versa. In fact,
this incorrect modeling of interaction zones is the primary
cause of the difference in the MSE for the test set between
both approaches. Extending the dataset with more interac-
tion samples would help improve the model. However, this
approach would limit interaction detection to visual cues
alone. Relationships between entities could also be identi-
fied using other perceptual sources. For instance, hearing
two people talking might help infer that they are interacting.

In the second experiment, the texture and color of the room
floor of the scenarios were altered, and 50 new samples of
this type of scenario were generated. Figure 12 displays the
outcomes for two distinct examples. In this case, the out-
put image produced by Pix2pix is nearly unidentifiable due
to its heavy reliance on visual features. In contrast, the out-
put generated by SNGNN2D-v2 remains unaffected by the
transformation in the floor pattern. This result is also con-
firmed quantitatively through the MSE between the output
generated by the two models and the ground truth. While the
MSE of SNGNN2D-v2 keeps a very low value (0.002759),
the MSE of Pix2pix increases significantly to 0.1262. Simi-
lar to Pix2pix, SNGNN2D-v2 requires detecting objects and
humans with varying appearances. However, for accurate
map generation using only visual information, the combina-
tion of different appearance elements to form a representative
set of potential scenarioswould need to be extensive andvisu-
ally realistic. Leveraging individual detectors for identifying
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Table 8 Results of the Tukey’s
HSD test for the survey data

Group 1 Group 2 Mean difference p-adjusted CI95%

GMM SNGNN2D-v1 0.4144 0.1033 [−0.0623, 0.8911]
GMM SNGNN2D-v2 1.6272 < 0.001 [1.1505, 2.1039]
SNGNN2D-v1 SNGNN2D-v2 1.2128 < 0.001 [0.7361, 1.6895]

Fig. 10 Disruption maps generated by Pix2pix (c) and SNGNN2D-v2 (d) for the scenarios in (a). The ground truth is shown in (b)

Fig. 11 Comparison between the cost maps generated by Pix2pix and SNGNN2D-v2 in scenarios with interactions
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Fig. 12 Comparison between the cost maps generated by Pix2pix and SNGNN2D-v2 in scenarios with a different floor than the scenarios used
during training

entities in the environment allows for the use of a significantly
smaller dataset to build a functional model.

5 Conclusion

Navigation cost maps are a critical component of human-
aware navigation (HAN) systems, providing robots with
valuable information for navigating shared environments
while minimizing social disruption. However, manually
crafting cost maps accurately reflecting dynamic envi-
ronments and human interactions is complex and time-
consuming. To address this challenge, we propose a learning-
based approach using graph neural networks (GNNs) to
generate cost maps in real time. Our model, SNGNN2D-
v2, takes entities’ positions, velocities, and interactions in
the environment as input and effectively encodes social dis-
turbance areas and interaction zones.

The model can be retrained using the same strategy to
account for new situations not explicitly included in the cur-
rent training set, such as larger objects or navigation areas.
Additionally, the generated cost maps can be combined with
other types of maps (e.g., occupancy grids) to adjust the final
map to the specific environment.

Experimentation indicates that incorporating entity veloc-
ities into the model significantly enhances its performance
compared to its predecessor (SNGNN2D-v1 [9]) and non-
learning-based approaches. Additionally, the comparison
with a convolutional neural network (CNN)-based approach

[23] trained on the same dataset indicates potential advan-
tages of GNNs. The use of structured data instead of raw
images allows the model to remain invariant to changes in
scenario appearance and to model interaction areas effec-
tively with a relatively moderate-sized dataset. Regarding
real-world experiments, the proposedmodel shows the ability
to generate maps in real time, enabling it to respond appro-
priately to the dynamics of the environment. The results also
suggest the model can adapt conveniently to situations where
the available space is limited. However, the number and com-
plexity of scenarios need to be extended to confirm these
findings and complete the validation of the model for its use
in real environments.

Our future work aims to extend the dataset to improve the
generalizability of the model by incorporating the follow-
ing additional data: real-world samples with noisy detections
and more realistic human motions; a wider variety of obsta-
cles and navigation areas; and additional human-centered
information, such as gaze direction and ongoing activities.
Furthermore, we aim to improve the functionality of our
model by adapting its output to generate different cost maps
corresponding to various robot actions. This refinement will
allow the creation of paths with associated robot speeds at
each step, which will enhance the robot’s social adaptability
and responsiveness in dynamic environments.
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Supplementary information

The data and models that support the findings of this paper
have been made publicly available at https://www.dropbox.
com/scl/fo/k282y10fecljyyl7sjj10/h?rlkey=e1i96zi1nqpfb
50k2xh5aq9tx&dl=0. The code is available in a public
GitHub repository at https://github.com/gnns4hri/SNGNN2D-
v2.
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